The Guide to the Lava Diagram

The Lava Diagram is this Venn diagram showing the relationships between the regular, decidable, and recognizable languages.

(In case you're wondering, this isn't really called "The Lava Diagram." That's just a fun name some students came up with a while back. I liked it, so I've kept using it ever since!)

Usually, we'll ask a question of the form "take this group of languages and place each one of them into the diagram in the proper place."

This question is designed to test your intuition for what the different classes of languages mean. The first time you see a problem like this, it can be tricky!

However, there are a bunch of useful intuitions that can help guide you while working on these problems. We'll go and talk about them by working through these four languages here.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```


Let's start by looking at this language L_{1} and seeing where it should go.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


There are a couple of different strategies you can use to work through these problems, but the one we find the most useful is to start from the outside and work inward.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 ={ a a}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


That is, we're going to start off with L_{1} in the ALL section, then try to see how far down we can push it into the Lava Diagram.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


- L_{1} (?)

The very first question we should ask ourselves, therefore, is whether this language belongs to RE.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


- L_{1} (?)

So what exactly is the class RE?

$$
\begin{aligned}
& L_{1}=\{\langle M\rangle \mid M \text { is a TM and }|\mathcal{L}(M)| \geq 2\} \\
& L_{2}=\{\langle M\rangle \mid M \text { is a TM and }|\mathcal{L}(M)|=2\} \\
& L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N} \text { and } n>1000\right\} \\
& L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N} \text { and } n \leq 1000\right\}
\end{aligned}
$$

- L_{1} (?)

When we first defined RE, we said that it was the class of all the recognizable languages.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


- L_{1} (?)

This means that we could try to think about RE as "the class of problems with recognizers."

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


- L_{1} (?)

However, later on, we saw a different definition of RE, which I think is actually a lot more useful here.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 ={ a a}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Specifically, we saw that $R E$ is the class of languages that have verifiers.

```
L
L2 = {\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


If you think back to what a verifier for a language is supposed to do, at a high level, it's really an "answer checker."

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Specifically, a verifier is supposed to take in a string and a certificate, then see whether the certificate proves whether the string is in the language.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 ={ a a}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


We're going to use this intuition a ton when working through these problems. It's definitely worth making a note of this technique!

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


So let's go focus our attention to the particular language L_{1} we have right now.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Imagine you have a string in L_{1}. What does that string look like?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Well, according to the definition of the language, any string in L_{1} must encode

$$
\text { a } T M \text { where }|\mathcal{L}(M)| \geq 2 \text {. }
$$

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


So what exactly does that mean?

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Well, the language of a TM is the set of strings that it accepts.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


So, if $|\mathcal{L}(M)| \geq 2$, it means that M accepts at least two strings.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
Lu }={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


So we can think of L_{1} as *the language of TMs that accept at least two strings."

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


With that in mind, let's think about whether this language is in RE or not.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Let's imagine that we have a random TM and we are convinced that it accepts at least two strings.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Is there something we could do to prove that it accepts at least two strings?

```
L
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
L
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


In this case, the answer is yes:

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?
So, going off this intuition, we can be reasonably confident that the language
L_{1} is indeed in RE.
L
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 ={ a mb}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L3 ={ a mb}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
L4 ={ a a b}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000

The idea would go something like this.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


We can prove that our TM M accepts at least two strings by telling our verifier what two strings M is going to accept.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


Okay: So at this point we know that L_{1} is in RE.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


The next step is to determine whether it's also in class R.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a abb}||n\in\mathbb{N}\mathrm{ and n> 1000 }
L4 = { a anb}||n\in\mathbb{N}\mathrm{ and n m 1000 }
```


So what exactly is the class R?

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?
R: Languages with Deciders
There's an alternative perspective that I think is a bit easier to use, though.
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

This turns out to be a great way of intuiting the class R. A language belongs to R if it's in RE, and for any string that isn't in the language, there's a way to prove it's not in the language.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

A great exercise: think about how you could take verifiers for L and I and build a decider for L.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

Now, let's jump back to our particular language L_{1} here and use this intuition to think about whether or not it belongs to class R.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

That means that M must accept either no strings at all or just one string.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


R: Languages with Deciders

In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

So now the question is the following: if you have a TM that accepts either no strings or just one string, could you prove it to someone who was skeptical but honest?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

IF you want to convince someone that M only accepts at most one string, you need to convince them that out of the infinitely many strings that are out there, the TM accepts at most one.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
As we've seen before, though, we know In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$? that the only general way to find out what a TM will do on a string is to run the TM on that string and see what happens.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

So if we want to convince someone that a TM does' t accept infinitely many different strings, were out of luck: In the general case, we'd have to run the TM on all those strings...

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and ns 1000 
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?
... and given that there are infinitely many of them, we'll never finish checking them all.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

So, based on the intuition that a language is in R if we can always prove it when strings aren't in the language, we'd suspect that this language is not in R.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3 ={ a mb}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

To actually go and prove this, we could use some kind of self-reference trick and build a machine that asks whether it's going to accept at least two strings, then does the opposite.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

Before we move on to the next language, I wanted to take a minute to address a common question we get on problems like these.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2 }
```

L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000

```
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
If you look at the description of the In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
A lot of people ask - "Isn't it really easy to build a TM that accepts at least two strings? So shouldn't this be decidable? Or even regular?"

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

But notice that this problem isn't asking whether you can build this machine. It's a question about the language of all TMs with this particular property.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3 ={ a mb}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
In that sense, the question is really asking In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?
"how hard is it to tell whether a random TM actually does accept at least two strings?"

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements,

That question - the question of checking whether a TM has some behavior - is typically much, much harder than the problem of building a TM with that behavior.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3 ={ a mb}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

Keep that in mind going forward - the question is to determine whether an arbitrary string is in the language, not to try to find a string that happens to be in the language.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2 }
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

Before I talk about this particular problem, take a few minutes to think about where you believe this should go in the Lava Diagram. Once you've done that, let's rejoin and keep talking.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

Did you actually go and think about it? If not, you should. Like, seriously. It's good practice.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

Okay: So now you've given it your best shot. Let's see where this one goes.

```
L
```

L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000

```
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

As before, we're going to start on the outside and move inward. Initially, we won't make any assumptions about where this particular language goes.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders

In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

To show that a TM accepts exactly two strings, we need to show that it accepts at least two strings (that's something we can prove), but also that it doesn' \dagger accept anything else.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders

The problem is that to show that a TM accepts a particular set of strings and In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$? nothing else, we need to prove that the TM doesn't accept any strings outside of that set.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

That in turn would require us - in the general case - to run the TM on infinitely many strings to see what happens, since there's no general way to see what a TM does other than to run it.

```
L
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?
so at least, intuitively, this doesn't seem like it's going to be possible to do. Even if we know that TM accepts exactly two strings, it's unclear how we'd prove that to someone.

```
L1 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```


RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders

In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?

I chose this particular example because it highlights a key point when thinking about languages: don't try to place a language in the diagram just based on its description.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3 ={ a a}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$?

R: Languages with Deciders

 In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$?```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2}
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```






RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

That means that we have a string of the form $a^{n} b^{n}$ with at least
2,002 characters in it (at least 1,001 a's and at least 1,001 b's.)

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```



RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

Sure: We could just count up the a's, count up the b's, show that there are the same number, and show that there's at least 1,000.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```





RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

However, all of those cases are really easy to check. We either show that it has the wrong form or show that it doesn't have enough characters in it.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}||\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders
Okay, things are looking good here: In addition to the $\mathbf{R E}$ requirements, We know that this language is decidable. As our final step, we need to ask whether or not it's regular.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```



RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

We have a ton of different definitions for regular languages - they're the languages of DFAs, NFAs, and regexes.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

But, as with $R$ and RE, I think there's a much better intuition to have about the regular languages that makes it easier to see whether something is regular.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```





REG: Problems Solvable with Finite Memory Are there are finitely many cases to check? In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{\mathbf{a}}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

So let's think about this here. What information do we need to keep track of?

- $L_{2}$

ALL

## R: Languages with Deciders

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?


Fundamentally, we'd have to keep track of how many a's we've seen, since if we can't do that, we can't match it against the number of $b$ 's.

```
L
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{\mathbf{a}}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

## R: Languages with Deciders

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

That's a problem: there are infinitely many possible choices for the number of a's that we'd have to remember, and we can't remember which number we've seen with finitely many states:

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}||\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{\mathbf{a}}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

So this gives us the intuition that $L_{3}$ is almost certainly going to be nonregular.
$L_{1}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{C}(M)| \geq 2\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)|=2\}$
$L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n>1000\right\}$
$L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 1000\right\}$

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{\mathbf{a}}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

You can formally prove this by using the Myhill-Nerode theorem. I highly recommend it - it's good practice:

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{\mathbf{a}}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

## R: Languages with Deciders

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

We've seen how to use our key intuition for regular languages - they're languages you can solve in finite space - to check whether something is regular.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3 = { a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n\leq1000
```

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?
$L_{1}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)| \geq 2\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)|=2\}$
$L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n>1000\right\}$
$L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 1000\right\}$

With all that said and done, let's move on to our last language here.

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?


## REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

## R: Languages with Deciders

 In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

- $L_{2}$

ALL

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

given any string $w \notin L$, could you prove that $w \notin L$ ?
$L_{1}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)| \geq 2\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)|=2\}$
$L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n>1000\right\}$
$L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 1000\right\}$

The question now is whether it's regular or not.
RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

## REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?



## R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements,

- $L_{4}$ (?)


##  <br> $\square$

ALL
$\square$


```
L1 = {(M)|M is a MM and |L(M)| \geq2}
L
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?
$L_{1}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)| \geq 2\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)|=2\}$
$L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n>1000\right\}$
$L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 1000\right\}$

The answer is yes. Here's a number of different ways to think about why.

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?


REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

## R: Languages with Deciders

First, we can think about this from an information perspective. To check whether a string is in this language, we need to keep track of how many a's there are and how many b's there are...

```
L
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n> 1000 }
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?
....but only up to a point. After we see 1,001 copies of either character, we know that the string isn't in the language.

```
L_ ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

This means that we just need to remember how many a's and b's we've seen (within the limits) and whether we're still reading a's or b's.

```
L
L2 = { \langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

That means we only need a finite amount of information to decide whether a string is in the language, so using our intuition for the regular languages, this one will be regular.

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

$L_{1}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)| \geq 2\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)|=2\}$
$L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n>1000\right\}$
$L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 1000\right\}$

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

Here's another approach we can take.

- $L_{2}$

ALL

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

There's only 1,001 of them, corresponding to all the different choices of $n$ we can make.

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

As you proved on Problem Set b, all finite languages are regular. That means that this language has to be regular.

```
L
L2 = { \langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```


## REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders
In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```

$L_{1}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)| \geq 2\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and $|\mathcal{L}(M)|=2\}$
$L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n>1000\right\}$
$L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 1000\right\}$

RE: Languages with Verifiers Given any string $w \in L$, could you prove that $w \in L$ ?


As a final option, we can think about this in terms of DFA or regex design.

- $L_{2}$

ALL

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 = { a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and ns 1000
```

You could imagine building a (huge) regex for this language:
$\varepsilon \cup a b \cup a a b b \cup a a a b b b \cup \ldots \cup a^{1000} b^{1000}$

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

So that means that it's going to be regular.

```
\(L_{1}=\{\langle M\rangle \mid M\) is a TM and \(|\mathcal{L}(M)| \geq 2\}\)
\(L_{2}=\{\langle M\rangle \mid M\) is a TM and \(|\mathcal{L}(M)|=2\}\)
\(L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.\) and \(\left.n>1000\right\}\)
\(L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right.\) and \(\left.n \leq 1000\right\}\)
L
L2 = { \langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```



## REG: Problems Solvable

RE: Languages with Verifiers with Finite Memory

Are there are finitely Given any string $w \in L$, could you prove that $w \in L$ ? many cases to check?


R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?
fet's do a quick recap of what all of the different regions mean and how best to think about them.

```
L1 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|\geq2}
L2 ={\langleM\rangle |M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a b}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and n s 1000 }
```




REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

```
L
L2 ={\langleM\rangle|M is a TM and |\mathcal{L}(M)|=2 }
L3}={\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}|n\in\mathbb{N}\mathrm{ and }n>1000
L4 ={ a a}\mp@subsup{\mathbf{b}}{}{n}|n\in\mathbb{N}\mathrm{ and ns 1000 }
```

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

$$
\begin{aligned}
& L_{1}=\{\langle M\rangle \mid M \text { is a TM and }|\mathcal{L}(M)| \geq 2\} \\
& L_{2}=\{\langle M\rangle \mid M \text { is a TM and }|\mathcal{L}(M)|=2\} \\
& L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N} \text { and } n>1000\right\} \\
& L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N} \text { and } n \leq 1000\right\}
\end{aligned}
$$

The more that you learn about these languages, the more intuitions and nuances you'll be able to use to help guide your search.

REG: Problems Solvable with Finite Memory Are there are finitely many cases to check?

R: Languages with Deciders In addition to the $\mathbf{R E}$ requirements, given any string $w \notin L$, could you prove that $w \notin L$ ?

$$
\begin{aligned}
& L_{1}=\{\langle M\rangle \mid M \text { is a TM and }|\mathcal{L}(M)| \geq 2\} \\
& L_{2}=\{\langle M\rangle \mid M \text { is a TM and }|\mathcal{L}(M)|=2\} \\
& L_{3}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N} \text { and } n>1000\right\} \\
& L_{4}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N} \text { and } n \leq 1000\right\}
\end{aligned}
$$

Hopefully, this gives you a good starting point for working through Lava Diagram questions. Good luck:


Did you find this useful? If so, let us know: We can go and make more guides like these.

