The Guide to the Lava Diagram

Hi everybody:

A N

s you probably noticed on Problem
Set Seven - and on the practice final
exams — we love asking questions about
*The Lava Diagram,”’

N— \//

The Lava Diagram is This Venn diagram

showing the relationships between the
reqular, decidable, and recognizable

languages.
- quag

~

7~ (In case you're wondering, this st N

really called *The Lava Diagram.” That's

just a fun name some students came up
with a while back. I liked it, so I've

N kept using it eve%/

Usually, we'll ask a guestion of the form
*fake this group of languages and place
each one of them into the diagram in the

N—

proper place,*

@ -

Thls guestion is designed to test tgow
infuition for what the different classes
of languages mean, The first fime you
see a problem like this, it can be tricky:

N \//

CODD

m\/evev, there are a bunch of useful™
infuitions that can help guide you while
working on these problems, We'll go and

Talk about them by working through these

" tour \a\nquaqeshe<//

Li={ (M) | MisaTM and |C(M)|
L>={(M)|MisaTM and |C(M)| =
ILz3={ab"|ne€Nandn> 1000}
Ls={ab"|n€ Nandn <1000 }

IV

Let's start by looking at this language
L, and seeing where it should go.

Li={(M)|MisaTM and |C(M)| = 2 }

@ -

Theve are a couple of different s’fra’fegles

you can use To work Through these
problems, but the one we find the most
useful is To start from the outside
and work inward

\ .\//
Li={(M)|MisaTM and |C(M)| = 2 }

ALL

— ~

That is, we're going to start off
with L; in tThe ALL section, then try
o see how far down we can push it

into the Lava Diagram.,

\ \//
Li={(M)|MisaTM and |C(M)| = 2 }

®l1(?)
. R RE ALL
~ N

The very first question we should ask
ourselves, therefore, is whether this
language belongs to RE,

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

N—

®l1(?)
. R RE ALL
~ N

So what exactly is the class RE?

Li={(M)|MisaTM and |C(M)| = 2 }

~J

®l1(?)
. R RE ALL
~ N

When we first defined RE, we said that
it was the class of all the recognizable
languages.

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

®l1(?)
. R RE ALL
~ N

This means that we could try to think
about RE as *the class of problems
with recognizers,”

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

®l1(?)
. R RE ALL
~ N

However, later on, we saw a different
definition of RE, which I think is actually
a lot more useful here.

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

®l1(?)
. R RE ALL

~ N
Specifically, we saw that RE is the class

ot languages that have verifiers,

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

®l1(?)
. R RE ALL

~ N
It you think back to what a verifier for

a language is supposed to do, at a
high level, it's really an *answer checker,*

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

®l1(?)
. R RE ALL

e take)

pecifically, a verifier is supposed fo take

in a string and a cerfificate, then see

whether the certificate proves whether
the string is in the language.

~— \//
L= {(M)[MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

*L.(?)
. ALL

T~

I\n that sense, you can think of the RE
languages this way: they're the languages
where, for any string in the language,
there's some way To prove that the string
is indeed in the language.

\ \//
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

*L.(?)
. ALL

Tuvns out, this provides an amazingly
good infuition for the RE languages., A
language is in RE if and only if, whenever
you have a string in the language, there's
some way to prove it's in the language.

\ \//
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

We've going to use this intuition a Ton
when working through these problems,
It's definitely worth making a note of

N this ’feohniq{//
Li={(M)|MisaTM and |[C(M)| =2}

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

So let's go focus our attention to the
particular language L; we have right

—

Now.,

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Imagine you have a string in L;., What

—

does that string look like?

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Well, according to the definition of the
language, any string in L; must encode

—

a ™ where |C(M)| = 2.

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®l1(?)
. R RE ALL

~

N—

So what exactly does that mean?

—

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Well, the language of a TM is the set

—

ot strings that it accepts,

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

that M accepts at least two strings.

—
So, if IC(M)| = 2, it means

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

*the language of TMs that accept at

—
So we can think of L, as

least two strings.,*

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®l1(?)
. R RE ALL

~

N—

With that in mind, let's think about
whether this language is in RE or not.

—

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Let's imagine that we have a random T™
and we are convinced that it accepts at

—

least fwo strings.

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Is there something we could do to prove
that it accepts at least two strings?

—

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

7~ 1n other words, if we came across N
someone who was skeptical that the machine
actually accepts at least two strings,
could we convince them that the machine

Li={(M)|MisaTM and |C(M)| = 2 }

@ed does accept at \W

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

‘ In this case, the answer is yes:

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

*L.(?)
. ALL

If we happened fo know at least ’rw?

strings that the machine accepted, we
could just run the machine on both
those strings and watch it accept them,
N—

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

/Awone who was initially skeptical that N
our TM accepted at least two strings
would definitely be convinced at that point,
They just watched the TM accept at

N least two sfr%/
Li={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
— —~

So, going off this infuition, we can be
reasonably confident that the language
L]_ is indeed iV\ REO

~— \//
Li={(M)|MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

°L1(?)
ALL

A’f this point we haven't vuled ou’f’fh\e
possibility that it's also in R or is
regular, but it's almost certainly not

Ou‘\—Side RE.
N—

Li={(M)|MisaTM and |C(M)| = 2 }

you prove that w € L?

°L1(?)
ALL

RE: Languages with Verifiers

Given any string w € L, could

™~

A\’rhouqh the question here was just to
go and place Ly, it's not a bad idea
fo think about how we'd actually go

and build a verifier for L,.

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)
R RE ALL

The idea would go something like this,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)
R RE ALL

We can prove that our TM M accepts
at least fwo strings by telling our verifier
what two strings M is going 1o accept.

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

°L1(?)
ALL

~To ensure that our verifier doesn't qo\
into an infinite loop (remember - verifiers

aren't allowed to loop!), we can also
give the verifier the number of steps it's

__ 90ing to take for MQP/*J
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
—

™~

So the verifier would fake in as input
the ™M M, two strings wi and w,, and a
number of steps n, and could run M on

the stings wi and w, for up to n steps.

N—

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
—

It M accepts both w; and w, within that
many steps, then the verifier is convinced
that M definitely accepts at least two
strings.

~— \//
Li={(M)|MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

7~ 1 that doesn't happen, the verifier N
isn't sure of what the answer is, Maybe M
does accept two strings and we gave the
verifier the wrong strings, or maybe we

_dave it the wrong V\umbev\cﬁsf/em/
Ii={(M)|MisaTMand |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

~ 1f you wanted to write this up as 2 N\
formal proof, it's a good exerciser For
now, though, we're just going to continue
working through figuring out where this

_|anauage goes on the ‘—a{ma%;‘m/
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

Okay! So at this point we know that
L, 1s in RE,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

The next step is to determine whether
it's also in class R,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)
R RE ALL

So what exactly is the class R?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

well, we defined it to be the class of
all decidable languages.

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

That means that it's the class of all
languages that have deciders,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders
You can reason about whether a language

belongs to class R by thinking about
whether you could build a decider for it,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

There's an alternative perspective that
I think is a bit easier To use, though,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

-~ It turns out that N

R: Languages with Deciders

If L € RE and T e RE, then L ¢ R.

__ What exactly does @"?/
Ii={ (M) |MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

R: Languages with Deciders /I‘F L ¢ RE and T ¢ RE, then L ¢ E,\

From what we've talked about so far,
you probably have a slightly better feel for

\wha’r it means for L*Ob\ei"‘;‘;'/
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
®
R: Languages with Deciders /IF L € RE and T e RE, then L ¢ E.\

But what exactly does it mean for the
complement of L to be in RE?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

7~ 1f L c RE and T < RE, then L € B N\

Going off of our proof—based intuition,
it the complement of L is in RE, it means
that given any string w that is not in L,

\ﬂ"eve's a way To onveﬁ's\”o“/ﬂy
Li={(M)|MisaTM and |C(M)| = 2 }

R: Languages with Deciders

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

7~ This turns out to be a great way of N

infuiting the class R, A language belongs
fo R if it's in RE, and for any string
that isn't in the language, there's a way

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

\’fo prove it's not in ’rm\\anwa/qe./
Ii={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

—

™~

A great exercise: think about how
you could take verifiers for L and T

N—

and build a decider for L.

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

—~

Now, let's jump back to our particular
language L, here and use this
intuition to think about whether or not
it belongs to class R,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
®
R: Languages with Deciders ~)
In addition to the RE requirements, So imagine fthat you have some string

given any string w ¢ L, could you That isn't in L.,

prove that w ¢ L?

~— \//
Li={(M)|MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In other words, imagine you have
T™ M where |C(M)| < 2.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders That means that M must accept either

no strings at all or just one string.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

(Do you see why?)

N—

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

750 now the question is the following: ™\
it you have a TM that accepts either no

iven any string w ¢ L. could vou strings or just one string, could you
?)rove th};t s ¢gL9 ’ 4 prove it to someone who was skeptical

\ but honesw\//
Li={(M)|MisaTMand |C(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

I: This is going to be a bit fricky,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

~1F you want To convince someone that N

M only accepts at most one string, you

need to convince them that out of the
infinitely many strings that are out

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

\’rheve, the TM acoep’rsQ;ne/
Li={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
®
R: Languages with Deciders As we've seen before, though, we know
In addition to the RE requirements, that the only general way to find out what

a ™ will do on a string is to run the

TM on that string and see what happens,
N—

given any string w ¢ L, could you
prove that w ¢ L?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

750 if we want fo convince someone thal N
a TM doesn't accept infinitely many
different strings, we'vre out of luck:

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

the T™ on all Tho%ff{y/
Ii={ (M) |MisaTM and [C(M)| = 2 }

In the general case, we'd have to run

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
®
R: Languages with Deciders a8 , A)
. and given that there are infinitely
In addition to the RE requirements,

ny of them, "I n finish
given any string w ¢ L, could you many em, we ever finis

prove that w ¢ L? checking them all,

~— \//
Li={(M)|MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

/So, based on the intuition that a N
language is in R it we can always
prove it when strings aren't in the
language, we'd suspect that this language

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

\ is not in R.\//
Li={(M)|MisaTM and [C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

ﬂao’fua\\q go and prove this, we could™

use some kind of self—vreference trick
and build a machine that asks whether it's
going to accept at least two strings,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

N then does the OQ//
Li={(M)|MisaTM and [C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So at this point we've got this language
settled in the right place., It's in RE,
but it's not in R,

Li={(M)|MisaTM and |C(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

—

™~

Before we move on to the next language,
I wanted to take a minute To address a

N—

common guestion we get on problems

like these.

Li={(M)|MisaTM and |C(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders 1t you look at the description of the

language, you can see that it says

In addition to the RE requirements,
given any string w ¢ L, could you something about TMs that accept at least
prove that w ¢ L? two strings.

"~ \//
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

A lot of people ask - *Isn't it veaﬁ

easy to build a TM that accepts at least
fwo strings? So shouldn't this be
decidable? Or even reqular?’

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

The answer To that question is ‘yes,
‘ and no.*
prove that w ¢ L?

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

I:I’f is indeed possible To build a ™
prove that w ¢ L?

that accepts at least two strings.

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

‘ We can do that by just building a ™
.\—
prove that w ¢ L?

hat accepts everything, for example,

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

ﬂno’fioe that this problem isn't aski\nq

whether you can build this machine, It's
a question about the language of all
TMs with this particular property.

Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

™~

In that sense, the question is really asking
*how hard is it to tell whether a random

given any string w ¢ L, could you TM actually does accept at least two
prove that w ¢ L? strings?*

"~ \//
Li={(M)|MisaTM and |C(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

7~ That guestion - the guestion of N

checking whether a TM has some behavior

- is typically much, much harder than the
problem of building a ™ with that

Li={(M)|MisaTM and |C(M)| = 2 }

N behaviov‘\//

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

@ep that in mind going forward - the

R: Languages with Deciders
guesTion is to determine whether an

In addition to the RE requirements,

) i ¢ T d arbitrary string is in the language, not
given any string w ¢ L, could you p tving that h +
TR T 1 B D to try to find a string that happens to

| be in the \aMQ\,(ag{//
Li={{(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

— ™~

And with that said, let's move on fo
the second language:

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

~— \//
Li={(M)|MisaTM and |C(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

7~ Before 1 talk about this pav’ficu\av\

R: Languages with Deciders _ .
problem, take a few minutes fo think

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

about where you believe this should go in
the Lava Diagram. Once you've done

\’fha’f, let's rejoin anolke<fa\k)ng./

L:={(M)|MisaTM and |C(M)| =2 }

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

—

™~

Did you actually go and think about it?
It not, you should. Like, seriously, It's

N—

good practice,

L:={(M)|MisaTM and |C(M)| =2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

— ™~

Okay! So now you've given it your best
shot, Let's see where this one goes,

= ~J

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders As before, we're going To start on the

outside and move inward, Initially, we
won't make any assumptions aboul where
This particular language goes.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

Our first question is to determine whether
this language belongs to RE or nof,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

To do so, we're going To ask whether,
given a random string in the language, it's
possible to prove it's in the langquage.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

Looking over the definition of the
language, we see that this is the language
of all TMs whose language has size two,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={ (M) |MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

This means that this is the language of all
TMs that accept exactly two strings.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={ (M) |MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

So now we ask — if had a TM and you knew

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

for a fact that it accepted exactly two
strings, could you prove it?

L:={ (M) |MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

This Turns out fo be a lot harder than
just checking it a TM accepts at least
two strings.

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

" To show that a TM accepts exactly two N
strings, we need to show that it accepfts
al least two strings (that's something
we can prove), but also that it doesn't

" accept amq’rhinge\s\co//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

~The problem is that fo show that a TM N
accepts a particular set of strings and
nothing else, we need to prove that the

TM doesn't accept any strings outside of

N that se’('\//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

A~ That in furn would require us — in the

R: Languages with Deciders o
general case — To run the TM on infinitely

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

many strings o see what happens, since
there's no general way to see what a ™

N does other than Q//

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

%o at least, intuitively, this doesn't seem
like it's going to be possible to do,
Even it we know that TM accepts exactly

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

two strings, it's unclear how we'd prove

that to someOV‘eo\//

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

This gives us some justification to guess
that this language is probably not going
to be in RE,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

So there you have it - this language
is not even in RE,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

That might seem pretty surprising, given
how similar this language looks to Li.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={(M)|MisaTM and |C(M)| = 2 }
L:={(M)|MisaTM and |C(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

7~~~ 1 chose this parficular example N\
because it highlights a key point when

) : Thinking about languages: don't try to
given any string w ¢ L, could you
prove that w ¢ L? ’ place a language in the diagram just

__ Dbased on its oleSCViPQ//
Ii={(M)|MisaTM and |C(M)| = 2 }

L:={(M)|MisaTM and |C(M)| =2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

70 figure out where something goes, ~\
you need To think about in terms of

) s I d provability, Ultimately, it's this - rather
gl,if\l;lei?;s’;iégﬁg] 2 i, GETlELFow than the way it's written - that makes

\ ’H’IIV\QS haYd‘\//
Li={(M)|MisaTM and |[C(M)| = 2 }

L:={(M)|MisaTM and |C(M)| =2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

With that said, let's go take a look at
the next language in our list,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

TEEssels (?)

R: Languages with Deciders

As before, we'll start by placing it
outside of RE and try to think about
pushing it as far down as possible,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

*J3 (?)

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

As before, we first ask whether this
language happens to be in RE,

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

*J3 (?)

R: Languages with Deciders

So let's imagine we have an
arbitrary string from this language.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

®J3 (?)

™~

That means that we have a string
of the form a"b" with at least
2,002 characters in it (at least 1,001 a's
and at least 1,001 b's,)

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

*J3 (?)

R: Languages with Deciders

So - given That string, could we prove
o someone that the string was indeed
in The language?

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders Sure! We could just count up the a's,

count up the b's, show that there are

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

the same number, and show that there's

at least 1,000.
N—

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

Next, let's ask the follow=up gquestion
fo see it L; is in R, It we had a string
not in the language, could we prove it?

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

There are a lot of cases To check if the
string ends up not being in the language.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

It could not have the form a"b", or it
could have too few a's and b's in it,
for example,

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

~~

However, all of those cases are really
easy to check, We either show that it has
the wrong form or show that it doesn't

have enough characters in if,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

Okay, things are looking good hev?

We know that this language is decidable,
As our final step, we need to ask
whether or not it's reqgular,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So what exactly makes a language reqular?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

—

We have a fon of different definitions for
regular languages - they're the languages

N—

™~

ot DFAs, NFAs, and regexes,

L= {ah"|n€Nandn > 1000 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

g’f, as with R and RE, I think Jﬂﬂeve's\a
much better intuition to have about the
regular languages that makes it easier

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

to see whether something is reqular.

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

/Speoiﬁoa\\q, the regular languages veam

R: Languages with Deciders
correspond to problems that you can

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

solve in finite memory., (This is the same
infuition we used to find nonreqular

N languages for the MQ‘/)/

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

~1f you're Trying to determine whether N

a decidable language happens to be
regular, think about how much

information you need to remember

" about the inpu’rs’rvi\nq.//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

" 1f you only need to remember one of N

R: Languages with Deciders . .
finitely many pieces of information, then

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

the language is almost certainly regular,
even if you can't envision a clean DFA

N or regex fok//

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So let's think about this here., What
information do we need to keep
track of?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Fundamentally, we'd have 1o keep track
ot how many a's we've seen, since it
we can't do that, we can't match it

against the number of b's,

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

7~ That's a problem: there are inﬁnife\q\

many possible choices for the number of
a's That we'd have to remember, and
we can't remember which number we've

L= {ah"|n€Nandn > 1000 }

N See" with finitely man{/’mf%!/

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

So this gives us the intuition that L; is
almost certainly going to be nonregular,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

You can formally prove this by using the
Myhill=Nerode theorem. I highly recommend
it - it's good practice:

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

So - what did we \cam<c/?;|

Lz={ab"|n€Nandn> 1000 } ‘

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

®[>
®ls
ALL
®
R: Languages with Deciders We've seen how to use our key intuition
In addition to the RE requirements, for regular languages - they're languages

given any string w ¢ L, could you you can solve in finite space - to check

prove that w ¢ L? whether something is reqgular,

= ~J

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

With all that said and done, let's move
on Yo our last language here,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,

given any string w ¢ L, could you
prove that w ¢ L?

7~ While normally we've falked about N\

starting from the outside and moving
inward, for this language I think you can
probably see that this is going to be

Ls={ab*"|n€ Nandn <1000 }

_decidable, so let's start it there,

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

The guestion now is whether it's reqular
or nof,

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

The answer is yes, Here's a number of
different ways to think about why,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>
®/s3

ALL

/Fivs’f, we can Think about this from an N
information perspective, To check whether
a string is in this language, we need to
keep frack of how many a's there are

_ 2hd how many b's%/

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

®J]->
®J3
ALL
®
R: Languages with Deciders a8 ,)
Jout only up To a point, After we see
In addition to the RE requirements,

, : 1,001 copies of either character, we know
given any string w ¢ L, could you

prove that w ¢ L.? that the string isn't in the language.

= ~J

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

™~

R: Languages with Deciders This means that we just need o remember

how many a's and b's we've seen (within
the limits) and whether we're still reading
a's or b's,

= ~J

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>
®/s3

ALL

A That means we only need a finite AMounTN
of information to decide whether a

string is in the langquage, so using our

infuition for the regular languages, this

N one willl be veQ“"\{//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

Here's another appvoad\\d{oa\/\/ﬂ

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

How many strings are in this language?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

There's only 1,001 of them, corresponding
to all the different choices of n we can

In addition to the RE requirements,
given any string w ¢ L, could you

ke,
prove that w ¢ L? make

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

As you proved on Problem Set &, all
finite languages are reqular, That means
that this language has to be regular.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

As a final option, we can think about this
in ferms of DFA or regex design,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

You could imagine building a (huge)
regex for this language:
€ u ab v aabb u aaabbb u .. u awrbpr

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

So that means that it's going To be
regular,

Ls={ah"|n€Nandn = 1000 } ‘

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

By now we've successtully placed all the
languages in to the Lava Diagram,
Woohoo!

/>

ALL

®/s3
R

et's do a gquick recap of what all of th
different regions mean and how best
to think about them,

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

7~~~ First, the RE languages. To check N\
whether a language is RE, ask yourself
whether, for any string in the language,
you could prove to someone else that

N it's in the \an%/

/>

ALL

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

Next, the R languages., If that qou\
already know your language is in RE, you

can figure out whether it's in R by asking
hether, for any string not in the language,

you can prove it's not in the language.

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®/s3

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

—

N—

Finally, the regular languages. Those are
the ones that you can solve given only

™~

finite resources.

~J

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders The more that you learn about these

languages, the more infuitions and nuances
you'll be able to use to help guide your
search,

= ~J

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={ (M) |MisaTM and |C(M)|
L>={ (M) | MisaTM and |C(M)|
ILz3={anb"|n€Nandn> 1000}
Li={ab"|n€ Nandn <1000 }

v

2}
2}

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

°J>
®Js
ALL
®
R: Languages with Deciders ~ o)
Hopefully, this gives you a good
In addition to the RE requirements,

starting point for working through
Lava Diagram questions, Good luck:

= ~J

given any string w ¢ L, could you
prove that w ¢ L?

Li={ (M) |MisaTM and |C(M)|
L>={ (M) | MisaTM and |C(M)|
ILz3={anb"|n€Nandn> 1000}
Li={ab"|n€ Nandn <1000 }

v

2}
2}

—

&

Hope this helps:)

Please feel free to ask

estions if you have them,

~ TN
Did you find this useful? I1f
so, let us know!: We can go

and make more quides like these,

— —

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151

